

STRUCTURAL WRINKLING PREDICTIONS FOR MEMBRANE SPACE STRUCTURES

David W. Sleight, Alexander Tessler, and John T. Wang Analytical and Computational Methods Branch NASA Langley Research Center Hampton, VA

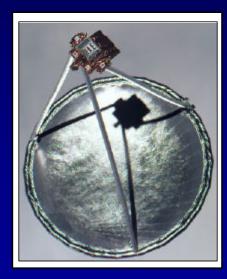
d.w.sleight@larc.nasa.gov

FEMCI Workshop 2002 Innovative FEM Solutions to Challenging Problems May 22-23, 2002

Outline

- Motivation
- Objectives
- Tension Field Theory for Predicting Wrinkling
- Thin-Shell Theory for Predicting Wrinkling
- Wrinkling Analyses
- Summary

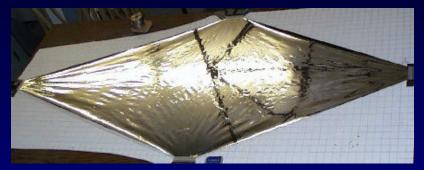
Motivation


- Future space missions enabled by large Gossamer systems
- Understanding and predicting the behavior of membrane structures is essential for design and assessment of their performance

Solar Sail

Sunshield

Membrane Optics



Types of Wrinkles

Material Wrinkles

- Permanent deformations
- Creases
- Result from manufacturing or packaging

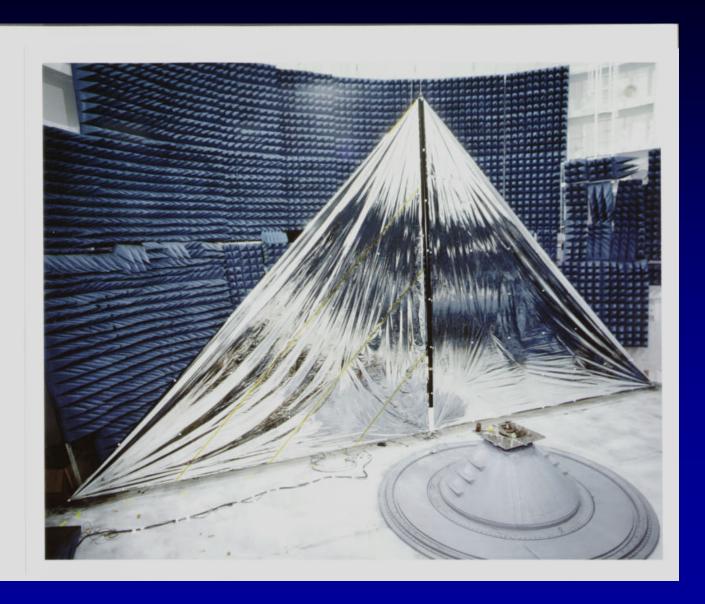
Structural Wrinkles

- Temporary deformations
- Localized buckling
- Result from loading or boundary conditions
- Change load paths within a membrane structure

Problems Due to Structural Wrinkling

- Degraded performance
- Affect maneuverability and stability
- Poor surface accuracy

NGST Test

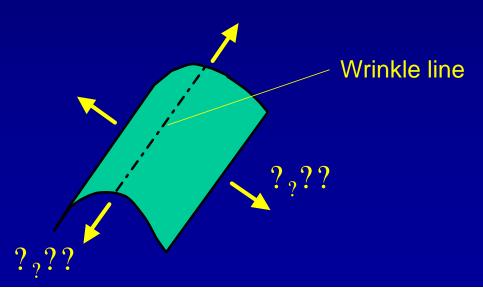

Inflatable Antenna

Solar Sail

10 m, 2 Quadrant Solar Sail in LaRC 16m Vacuum Chamber

Objectives

- Develop effective and robust FEA capabilities to predict structural wrinkles in membrane space structures
- Predict surface distribution of structural wrinkles using:
 - Membrane analysis
 - Shell analysis (with out-of-plane deformations)


Tension Field Theory for Predicting Wrinkling

- Originated by Wagner (1929) and Reissner (1938)
- Membranes have negligible bending stiffness and cannot sustain compressive stresses
- Wrinkles are treated as infinitesimally close to one another
- Out-of-plane deformations of wrinkles cannot be determined
- Tension field Theory (TFT) has been implemented by
 - varying linear elastic material properties
 - introducing a wrinkle strain
 - formulating a 'relaxed' strain energy density

Stein-Hedgepeth Theory (SHT) - 1961

- Membrane cannot carry compressive stress
- Two types of regions:
 - Taut
 - Wrinkled
- Effects of wrinkling are accounted for using a variable Poisson's ratio that permits "over-contraction" in the direction of minor principal stresses
- Wrinkles are aligned with the major principal stress axis

Iterative Membrane Property (IMP) Method

(Miller and Hedgepeth, 1982)

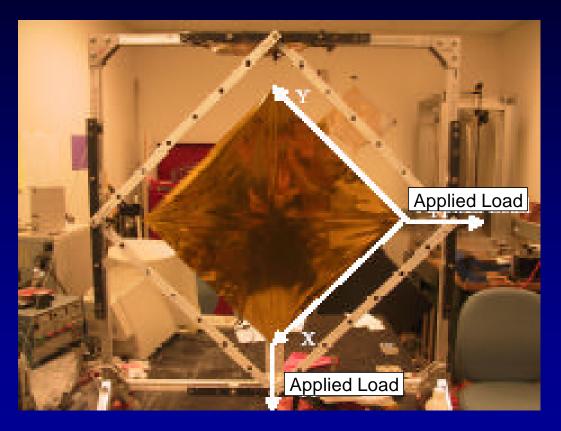
- FE implementation of the SHT
- Geometrically nonlinear analysis
- Wrinkle criteria based on element stress/strain states
 - Taut: $?_2 > 0$ (isotropic material)
 - Wrinkled: $?_1 > 0 \& ?_2 = 0$ (orthotropic material)
 - Slack: ?₁ < 0 (zero stiffness material)</p>
- Finite element implementation into ABAQUS
 - Adler-Mikulas (2000)

Thin-Shell Theory for Predicting Wrinkling

- Membrane theory cannot predict the amplitude and shape of wrinkles
- Shell theory includes both membrane and bending flexibilities
 - enables post-buckling response
 - can predict amplitude and shape of wrinkles
- Geometrically nonlinear analysis is necessary to predict the structural behavior

Thin-Shell Wrinkling Analyses Using ABAQUS

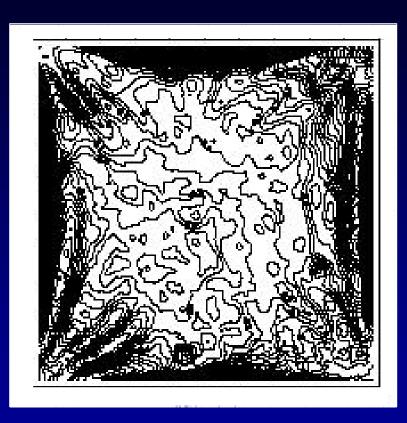
- Geometrically nonlinear FE analysis
- Using reduced integration thin-shell element (S4R5)
- Imperfections are added to initial geometry
 - mode shapes from buckling analysis
 - random imperfections
- Employ ABAQUS with STABILIZE parameter to automatically add damping for preventing unstable and singular solutions
 - for accuracy, use lowest possible value for which convergence can be achieved


Wrinkling Analyses

- Square Membrane Loaded in Tension
- Rectangular Membrane Loaded in Shear

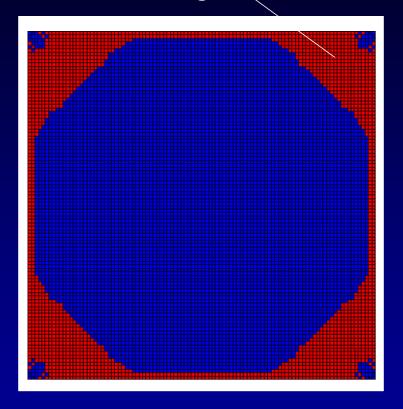
Square Membrane Loaded in Tension

(Blandino, Johnston, et al, 2002)



Kapton membrane: 2.54 x 10⁻² mm thick

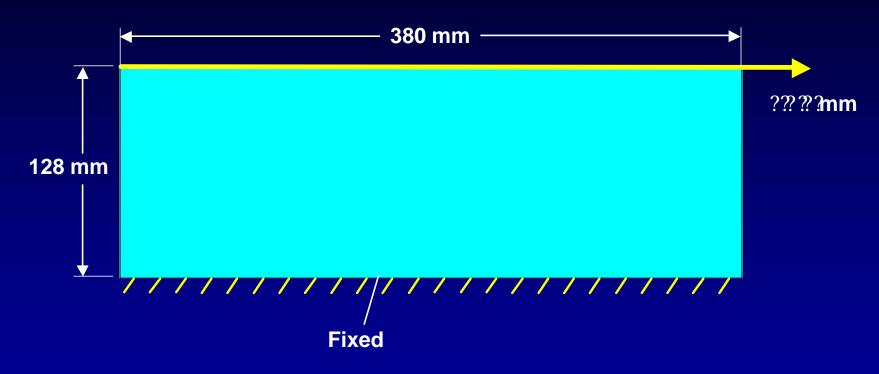
Applied Loads: 2.45 N (Isothermal)



Wrinkling Results

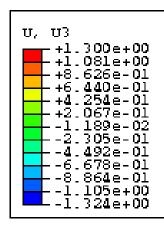
Experimental Results (Blandino, Johnston, et al)

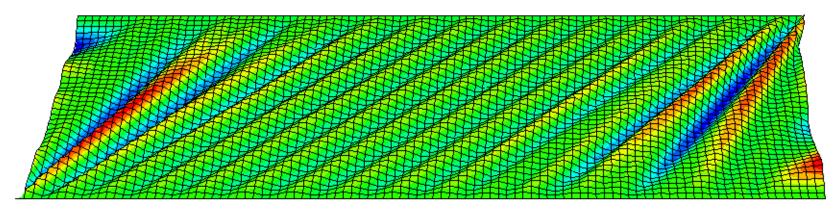
Wrinkled Region



ABAQUS IMP Results 10,000 elements M3D3/M3D4 Membrane Elements

Rectangular Membrane Loaded in Shear


(Wong and Pellegrino, 2002)


Kapton foil: 25 ?m thick

Wrinkling Results

3960 elements 5% initial random imperfections

Out-of-plane Deflection

Summary

- Future space missions enabled by Gossamer structures
 - Effective and robust analysis tools required
- Structural wrinkles constitute a major concern
 - Affect surface topology and behavior/performance
- FEA analyses using ABAQUS to predict structural wrinkling
 - Membrane analyses with IMP method
 - Thin-shell geometrically nonlinear analyses